
Overclocking Proximity Checks in
Contactless Smartcards

Dominic Celiano
Churchill College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of

Master of Philosophy in Advanced Computer Science

University of Cambridge
Department of Computer Science and Technology

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: dtc34@cl.cam.ac.uk

June 8, 2018

Declaration

I, Dominic Celiano, of Churchill College, being a candidate for the M.Phil in

Advanced Computer Science, hereby declare that this report and the work

described in it are my own work, unaided except as may be specified below,

and that the report does not contain material that has already been used to

any substantial extent for a comparable purpose.

Total word count: 14,646

Signed:

Date:

This dissertation is copyright c©2018 Dominic Celiano.

All trademarks used in this dissertation are hereby acknowledged.

Acknowledgements

I would like to thank my supervisor, Dr. Markus Kuhn, for his valuable feed-

back, discussions, and suggestions. I would also like to thank Sam Ainsworth

for reading a draft of my report and providing recommendations.

I would also like to thank the USAFA Francis E. Bennett Scholarship for

funding my degree and the US Air Force for supporting me during my pro-

gram.

Lastly, I would like to thank my family for their continuous support.

Abstract

Contactless smartcards are used in a variety of applications, from access
control to payment systems. Various attacks exist against contactless smart-
cards, but one of the most difficult to defend against is the relay attack. By
using two malicious devices, an attacker can relay communication between
a valid smartcard and a valid reader across a large distance, thereby using
the valid reader without the consent or knowledge of the card holder. This
attack can be defended against by implementing a distance-bounding proto-
col, or proximity check. By using precise timing measurements of how long
a card takes to respond, the speed of light, and cryptographic verification,
the reader can verify a card is within a certain distance of the reader.

Because a distance-bounding protocol’s effectiveness depends upon precise
timing measurements, a card’s internal timing implementation is of vital
importance. However, because contactless smartcards are powered by an
electromagnetic carrier, cards often derive their internal clock based solely on
that carrier’s frequency. If this is the case, overclocking is possible; the carrier
frequency can be increased to speed up the smartcard’s computation, forcing
it to respond quicker during time-sensitive distance-bounding exchanges and
allowing a relay attack to once again be carried out.

In this report, I describe experiments on overclocking two popular contact-
less smartcards: the Mifare Plus EV1 and Mifare DESFire EV2. When over-
clocked, these cards responded to their distance-bounding requests more than
20% faster than they should have, allowing a relay attack to be conducted at a
one-way distance of over 40 km, despite the existence of a distance-bounding
protocol.

The first part of this report describes precise timing measurements of the
Mifare distance-bounding protocol. The low variance of the timing mea-
surements collected shows an effective implementation of timing on both the
Mifare Plus EV1 and Mifare DESFire EV2.

The second part of this report describes overclocking the Mifare Plus EV1
and Mifare DESFire EV2. Both cards were clocked at frequencies above
16.30 MHz – over 20% higher than the 13.56 MHz frequency which they
are specified to run at. The consequences of overclocking at 16.30 MHz are
demonstrated via an example relay attack that I describe in detail.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Aims and Contributions . 4

1.3 Report Organization . 5

2 Related Work 7

2.1 Relay Attacks . 7

2.1.1 Relay Attack Origins 7

2.1.2 Relay Attacks in Practice 9

2.2 Distance Bounding . 10

2.2.1 Distance-Bounding Protocols 10

2.2.2 Distance Bounding in Practice 12

2.3 Miscellaneous Mifare Research 14

3 Design and Implementation 17

3.1 ISO 14443 . 17

3.1.1 ISO 14443 Overview 17

3.1.2 ISO 14443A Physical Layer 18

3.1.3 ISO 14443A Timing 20

3.2 Proxmark 3 . 22

3.2.1 Proxmark 3 Overview 22

3.2.2 Proxmark 3 Software 24

3.2.3 Proxmark 3 Hardware 26

3.3 Distance Bounding Timing Measurements 28

3.3.1 Mifare Proximity Check 28

3.3.2 Measuring Timing Using the Proxmark 3 30

3.4 Overclocking . 36

3.4.1 Changing the Proxmark 3 Clock 36

3.4.2 Analog Considerations of Overclocking 38

i

4 Results and Evaluation 45
4.1 Timing Measurements . 45
4.2 Overclocking Results . 48
4.3 Overclocking Relay Attack Example 50
4.4 Recommendations . 56

5 Conclusion 57
5.1 Summary . 57
5.2 Future Work . 58

A Mifare Plus and Mifare DESFire Setup 65

ii

List of Figures

2.1 Visualization of a normal transaction compared to a relayed
transaction. 8

2.2 Overclocking visualized. Image by Henzl et al. [1]. 13

3.1 Sequences for PCD to PICC communication. Image from ISO
14443 [2]. 19

3.2 REQA transaction at 13.56 MHz, with timing annotated. . . . 21
3.3 Proxmark 3 block diagram. 23
3.4 Proxmark 3 analog receive path and DSP at fc = 13.56 MHz. 27
3.5 Mifare proximity check, used on the Mifare Plus EV1 and

Mifare DESFire EV2. 29
3.6 Visualization of timing as it relates to PCD timestamps. ttot

is the timestamp recorded by the PCD. 31
3.7 Eavesdropping a Mifare DESFire REQA transaction using a

near-field probe hooked up to a spectrum analyzer. 35
3.8 Antennas used with a frequency of 13.56 MHz other than the

RyscCorp antenna. 39
3.9 Circuit diagram of the RyscCorp antenna. 39
3.10 Circuit diagram used for antenna tuning. 41
3.11 RyscCorp antenna tuning with C3 in parallel. Horizontal axis

goes from 10 MHz–30 MHz. 42
3.12 Frequency limitations of the Mifare DESFire. Note the verti-

cal scales are different. 43

4.1 The four relay attack processing delays. Original image by
Clulow et al. [3]. 52

4.2 Delay between the eavesdropped PICC response and the mole’s
serial output. 53

iii

iv

List of Tables

4.1 Mifare Plus EV1 Proximity Check response times, in ms, with
fc = 13.56 MHz. 46

4.2 Mifare DESFire EV2 Proximity Check response times, in ms,
with fc = 13.56 MHz. 46

4.3 Mifare Plus EV1 Proximity Check response times, in ms, with
fc = 16.50 MHz. 49

4.4 Mifare DESFire EV2 Proximity Check response times, in ms,
with fc = 16.30 MHz. 50

v

vi

Chapter 1

Introduction

1.1 Motivation

The flexibility of using smartcards for identification has led to their wide

adoption. Contactless smartcards provide more convenience than their con-

tact counterpart, only requiring the user to present his or her card to a reader.

Because of this convenience, contactless smartcards are commonly used in ac-

cess control and payment systems, having recently been integrated into the

EMV (Europay, Mastercard, and Visa) standard alongside NFC (near-field

communication) mobile phone payments [4]. Contactless smartcards can

even be used to perform web authentication [5].

From a security perspective, there are three main attack vectors to compro-

mise a contactless smartcard. The first is to steal a user’s card, use physical

tampering to recover its keys and memory contents, and produce clones of

it. One clone can then be returned to the user without the user having any

knowledge that his or her card was stolen in the first place. Defenses against

this type of attack include using tamper-resistant smartcards [6] and ensuring

a card does not get stolen.

The second is for an attacker to use a “rogue” reader. Unlike contact smart-

cards, contactless smartcards do not require the user’s card to be physically

1

inserted into a terminal. Because of this, a rogue reader can be held up to a

user’s card, likely while the user is in a crowded space, and used to perform

a transaction without the knowledge of the user. This attack vector can be

defended against by a user keeping his or her smartcard in a Faraday cage

such as a specially designed wallet [7]. Another defense is placing a sheet of

metal geometrically parallel with a card to have the same effect as a Faraday

cage and prevent the card from being powered up. The latter defense is im-

plemented in US passports, which use an “anti-skimming” cover to prevent

the passport’s RFID tag from being read while the passport is closed [8].

The third attack vector is the most difficult to defend against. In it, a reader

has either been internally reconfigured or had a malicious external component

added to it by an attacker, making it a “malicious” reader. When a malicious

reader is used, authentic smartcard transactions can be eavesdropped to col-

lect the details of the transaction. Additionally, the malicious reader can be

used to perform additional transactions with the authentic smartcard, either

to relay the transactions to an external reader or to collect information from

the card.

With the latter two attack vectors (rogue and malicious reader), two attacks

can be carried out. The first is to compromise a smartcard non-invasively

by performing transactions to recover the card’s keys and memory contents.

Later, those memory contents can be used to create a clone of the card

which can be used as if it was authentic. Although this attack has previously

been carried out on the Mifare Classic [9], it relies upon the use of insecure

cryptography by the smartcard, a problem which has been fixed in newer

models.

The second type of attack is a “relay attack”, in which an attacker relays the

communication from a valid card to a valid remote reader. The channel used

for the relay can be wired or wireless, and can even be implemented using

two smartphones. If implemented properly, the user has no way of knowing

he or she was the victim of a relay attack.

Both contact and contactless smartcards are vulnerable to relay attacks, but

2

because contactless readers only send and receive radio signals (as compared

to having physical access to the card they are reading, and perhaps requiring

a PIN), contactless relay attacks are easier to carry out. Contactless relay

attacks can also be less conspicuous than their contact counterpart, since a

smartphone or a device hidden in a wallet can be used as relay devices. This

compares to a custom contact smartcard, such as was designed by Bond et

al. [10], which must be inserted into a terminal.

The main difficulty in preventing relay attacks on contactless smartcards,

however, is the fact that contactless smartcards have no user interface (UI).

When a user presents his card to a reader, he has no way of validating

that his card was not used maliciously. This compares to an NFC-enabled

smartphone, which can provide an interactive dialog to the user during the

transaction, i.e. “Are you sure want to open Door 5 in Building A?”. If a

protocol which features such a UI is implemented securely, a user can ensure

his device has not been used maliciously.

To prevent relay attacks on a device without a UI, however, a reader can

take steps to ensure a card is within a certain distance, such as 20 cm. Doing

so can prevent a transaction from being relayed over a one-way distance

larger than 20 cm. To perform such distance bounding, a distance-bounding

protocol must be used. Distance-bounding protocols work by the reader

checking how long a card takes to respond to certain commands, using the

speed of light to calculate how far away a card is. Such protocols depend

upon cryptographic keys and signatures, and therefore must be implemented

on both the reader and card.

A successful implementation of a distance-bounding protocol relies upon pre-

cise timing measurements. A contactless smartcard must reply to requests

from the reader in an expected amount of time and with minimum vari-

ance. If the card takes longer to respond than expected, the transaction is

presumed to have been relayed, and the user is denied access. If the card

responds quicker than expected, however, an attack vector opens up; because

the card responded quicker, there is a time gap which can be used to relay a

signal. Given that the speed of light is 3 × 108 m/s, even the slightest time

3

gap (i.e. a few microseconds) can allow a transaction to be relayed over a

distance of a few kilometers.

One way of forcing a time gap during a distance-bounding exchange is by

overclocking the smartcard. Even if the smartcard provides precise times-

tamps with minimum variance, it might base those timestamps on a stan-

dardized carrier frequency, such as 13.56 MHz, and therefore derive its clock

solely from the reader’s carrier. If a higher carrier frequency is used by a

reader, therefore, the card can be forced to respond more quickly than it

should, increasing the time gap. This can be defended against by a card

containing an independent time reference, such as an internal oscillator, or

having a low-pass filter to filter out carrier frequencies above a certain cutoff

frequency.

1.2 Aims and Contributions

In this report, I describe precise timing measurements and overclocking re-

sults on two popular smartcards: the Mifare Plus EV1 and the Mifare DES-

Fire EV2, both of which implement distance-bounding protocols. First,

I took precise timing measurements of these distance-bounding protocols.

Next, I overclocked these cards with carrier frequencies of over 16.30 MHz,

over 20% higher than the 13.56 MHz specified by ISO 14443, allowing a sig-

nal to be relayed over a round-trip distance of over 80 km. This is the first

known work which overclocks these cards at such a high frequency, and the

first which overclocks the Mifare Plus EV1. This is also the first known work

which takes precise timing measurements of the Mifare Plus EV1’s distance-

bounding protocol.

I also implemented the Mifare distance-bounding protocol on an open-source

reader, the Proxmark 3, including the precise timing measurements necessary

for the protocol. With the granularity of timestamps I used, a contactless

smartcard can be bounded to a one-way distance of 9.38 m. Additionally, I

describe, in detail, a proof-of-concept relay attack using overclocking, includ-

4

ing a discussion of the hardware which would be necessary to perform such

an attack.

All Proxmark 3 code used can be found on my fork of the Proxmark 3 repos-

itory1, where my mainwork branch includes the code used for taking precise

timing measurements as well as collecting statistics.

1.3 Report Organization

Related work about relay attacks, distance bounding, and Mifare smartcards

is presented in detail in Chapter 2. The design and implementation of precise

distance-bounding timing measurements and overclocking is then discussed

in Chapter 3. Timing measurements, results of overclocking, and an example

relay attack proof-of-concept are presented in Chapter 4. Finally, conclusions

and future directions of research are discussed in Chapter 5. Details of the

setup done on the Mifare Plus and Mifare DESFire are described in Ap-

pendix A.

1My mainwork branch can be found on Github at: https://github.com/dceliano/

proxmark3/tree/mainwork

5

https://github.com/dceliano/proxmark3/tree/mainwork
https://github.com/dceliano/proxmark3/tree/mainwork

6

Chapter 2

Related Work

2.1 Relay Attacks

2.1.1 Relay Attack Origins

The concept of relaying information between two parties was introduced as

early as Conway’s chess grandmaster problem in 1976 [11]. Conway pointed

out that a middleman can relay chess moves between two chess grandmasters

via post, thereby appearing to be a skilled chess player to both his opponents

and gaining either one win or two draws, even without knowing anything

about chess.

When smartcards began to become popular in the 1980s, Fiat and Shamir

presented a protocol in 1986 which could be used for communication between

a prover P and a verifier V [12]. Their protocol allowed a user to identify

him or herself without using any public keys or shared private keys. Fiat and

Shamir’s strong claim that their protocol was secure even in a mafia-owned

store was challenged by Desmedt et al. in 1987 [13], in what Desmedt et al.

termed “mafia fraud” based on a newspaper article quote by James Gleick

quoting Shamir [14].

In mafia fraud, a relay is set up between two malicious parties who have the

7

Valid	
RFID	Tag

Valid	
RFID	

Reader

Valid	
RFID	

Reader

Valid	
RFID	Tag

Mole/	
Leech	–
RFID	

Reader

Proxy/	
Ghost	–
RFID	Tag

Relay

Normal	
Transaction

Relayed	
Transaction

Figure 2.1: Visualization of a normal transaction compared
to a relayed transaction.

goal of tricking two valid parties into performing a transaction. Nowadays,

the term mafia fraud is synonymous with relay attack. A visualization of a

relay attack with an RFID tag and reader is compared to a normal RFID

transaction in Figure 2.1. In a relay attack, the two malicious parties which

perform the roles of fake RFID reader and fake RFID tag are either known

as the mole/proxy or the ghost/leech, as Figure 2.1 shows.

One year after presenting mafia fraud, Desmedt described another attack,

“terrorist fraud”, in which the contactless smartcard user is colluding with

those conducting the mafia fraud [15]. This collusion makes the attack easier

to conduct, but is also seen as a less dangerous attack vector. In 1991,

Bengio et al. further critiqued the Fiat-Shamir protocol, expanding upon

the principles of terrorist and mafia fraud [7].

8

2.1.2 Relay Attacks in Practice

Although the theory of relay attacks had been figured out by the end of the

1980s, it wasn’t until the 2000s that practical relay attacks gained attention,

likely due to the growing presence of RFID technology. The earliest practical

relay attack was described by Hancke in 2005 [16]. Hancke showed that it

is possible to successfully relay communication of an ISO 14443A proximity

card up to a distance of 50 m. He included hardware details and showed

that performing such an attack does not require expensive tools or extensive

knowledge. He extended his work in 2006 by adding an FPGA to his design

which reports the maximum attacking window available to conduct a relay

attack [17]. In the same report, Hancke also demonstrated the threats behind

and possibility of eavesdropping RFID transactions.

Kfir and Wool presented a low-cost practical relay attack similar to Hancke’s

later in 2005 [18]. They also used an ISO 14443 contactless smartcard as

their test platform, and performed a relay at a distance of 50 m. Kfir and

Wool also made an RFID reader function at a distance of 50 cm from the

targeted smartcard.

Practical relay attacks have also been performed on contact smartcards, as

was presented by Drimer and Murdoch in 2007 [19]. Drimer and Murdoch

conducted a practical relay attack with the UK’s “Chip & PIN” system and

implemented a distance-bounding protocol in order to prevent such attacks.

Practical relay attacks gained more popularity in the 2010s when the ability

to read and write to contactless smartcards became possible using smart-

phones. One of the first proofs of concept using a mobile phone as a relay

was conducted by Francis et al. in 2010 [20]. In their paper, the authors

show that peer-to-peer communication using NFC mobile devices can be

used to perform a relay attack. For their test platform, they used two Nokia

smartphones.

Since Francis et al.’s work in 2010, NFC has been built into more smart-

phones, and contactless payment has become integrated into the EMV pro-

9

tocol [4]. Additionally, the Android HCE (Host-based Card Emulation) API

has been introduced, which allows Android applications to communicate di-

rectly with the NFC reader on the smartphone and thereby emulate a con-

tactless smartcard. These developments have opened up the path for much

more research into conducting relay attacks using mobile phones [21, 22, 23].

Relay attacks have also gained popularity because of the growth of passive

keyless entry into cars and the realization that expensive cars can be stolen if

a criminal gets hold of relay attack hardware. The West Midlands Police in

the UK have released surveillance videos of criminals using such methodology

to steal cars from owners [24]. Work which looks specifically at performing

relay attacks on contactless entry into cars includes that conducted by Fran-

cillon et al. in 2011 [25]. In their paper, the authors describe how they are

able to use inexpensive relay tools to a relay a contactless key transaction

up to a distance of 50 m. They conduct this relay using both wireless and

wired links, the latter allowing them to conduct relay attacks when the key

is not within line-of-sight of the vehicle.

2.2 Distance Bounding

2.2.1 Distance-Bounding Protocols

As previously discussed in Section 1.1, a smartcard can be limited to a certain

distance in order to defend against relay attacks. Gesture recognition can

also be used to help prevent such attacks [26]. With distance bounding, the

precise location of the user must be verified, done through the use of distance-

bounding protocols. When discussing distance bounding, the verifier V is

the party which is ensuring the prover P is within a certain distance. In the

case of contactless smartcard transactions, V is the reader and the P is the

smartcard.

When discussing distance-bounding protocols, it is necessary to distinguish

between the four attack scenarios previously identified by Cremers et al. [27].

10

1. Distance Fraud (Dishonest Prover) – P is dishonest and will

make every possible attempt to prove to V that he is closer than he

actually is.

2. Mafia Fraud – P is honest, but is tricked into performing a malicious

transaction, as previously discussed in Section 2.1.

3. Terrorist Fraud – P is dishonest and is voluntarily colluding with

middlemen attackers to prove to an honest V that he is closer than he

actually is.

4. Distance Hijacking – Multiple provers influence each other by a

dishonest prover P exploiting the presence of an honest prover P ′ to

convince V that he is closer than he actually is. One of the ways P can

do this is by hijacking communication between V and P ′ during their

distance measurement phase, as described by Cremers et al. [27].

The first distance-bounding protocol was developed by Brands and Chaum

in 1993 [28], based on a previous suggestion of such a protocol by Beth and

Desmedt in 1990 [29]. Brands and Chaum’s protocol introduces the idea of

a rapid bit exchange. In the rapid bit exchange, V times how long P takes

to respond to V sending a series of single bits k to P . Before the rapid bit

exchange begins, both V and P draw random numbers, each of size k bits.

Then, V sends out the bits of its random number one by one, to which P
immediately responds with a single bit of its random number. The number

of bits k in each random number is known as the security parameter.

At the end of the rapid bit exchange, P uses its private key to sign or produce

a Message Authentication Code (MAC) of the concatenation of the 2k bits

exchanged, the result of which is then sent back to V for verification. With

the Brands-Chaum protocol, the probability of mafia fraud being successful

is at most 1/2k.

With the Brands-Chaum protocol, V can send its bits at completely random

times, thereby preventing P from anticipating when it should send its re-

sponse. If V does decide to send out its bits at a predictable rate, however,

11

Brands and Chaum describe a protocol by which P ’s random bits can be

dependent upon the bits it receives from V , thereby preventing a fraudulent

P from predicting when to send bits to V . Brands and Chaum go on to

show how to integrate their distance-bounding protocol into already-present

public key identification schemes.

Since Brands and Chaum’s protocol was presented, other distance-bounding

protocols have emerged which take into account the computing limitations

of RFID technology. These include the Hancke-Kuhn protocol described in

2005 [30]. In it, V sends a nonce Nv to P before the rapid bit-exchange period

begins. Then, both V and P use a cryptographic function h to calculate two

bitstrings of length k which are based on Nv and the shared private key K,

i.e. h(K,Nv). V then draws a nonce of k bits and the rapid bit exchange

begins, with V sending its nonce bits to P , while P responds with the bits

of h(K,Nv) calculated earlier.

However, the bit of h(K,Nv) which P responds with needs to be decided

based on the bit which V sent, since h(K,Nv) is twice the length of Nv.

The reason for this is so that P only ever reveals half the bits of h(K,Nv),

and therefore it becomes more difficult for an attacker to guess the value

of h(K,Nv), having a probability of guessing all the bits correctly of only

(3
4
)k. The Hancke-Kuhn protocol provides a faster authentication time than

the Brands-Chaum protocol and also takes into account an environment in

which there may be noise.

There have been many follow-ups to the Brands-Chaum and Hancke-Kuhn

protocols. A thorough investigation of these different protocols and a frame-

work for performing such a comparison is given by Avoine et al. [31, 32].

2.2.2 Distance Bounding in Practice

Understanding the theory of distance-bounding protocols is important, but

where are such protocols actually implemented, and how can they be broken?

Trying to break an implementation of a distance-bounding protocol was the

12

Figure 2.2: Overclocking visualized. Image by Henzl et al. [1].

goal of Hancke et al. in 2008, when the authors were able to successfully

overclock a 13.56 MHz RFID tag with carrier frequencies of 14.56 MHz and

15.56 MHz [33]. A visualization of the consequences of overclocking can be

seen in Figure 2.2.

In Figure 2.2, A and C are the amount of time needed to perform a transac-

tion (A is without a relay, C is with a relay), while B is the delay caused by

using a relay in a relay attack. A and C are sped up by overclocking a card,

while B remains constant.

In 2014, Henzl et al. overclocked the Mifare DESFire at a frequency of

16.00 MHz [1], using the Proxmark 3 to get the DESFire to run at such a

frequency. However, the authors did not provide extensive details of their

methodology and did not conduct specific timing measurements of the DES-

Fire’s distance-bounding protocol.

Because of the threat of relay attacks, some researchers have implemented

distance-bounding protocols using purely analog hardware. Examples in-

clude Rasmussen and Capkun’s work in 2010, in which they presented a pro-

totype prover which can receive, process, and transmit signals in less than

1 ns [34]. At this level of precision, an RFID tag can be verified to be within

13

a distance of 15 cm.

In 2008, Clulow et al. showed that it is possible to circumvent a distance-

bounding protocol if it is not implemented properly [3]. Additionally, Reid

et al. showed in 2007 that it is possible to detect relay attacks by using

timing-based protocols [35]. In 2015, Gambs et al. implemented a distance-

bounding protocol on a smartphone, giving the ability to detect relay attacks

that introduce a latency of more than 1.5 ms [36].

In 2017, Soules et al. reverse engineered the distance-bounding protocol of

the Mifare DESFire EV2, which uses the same distance-bounding protocol as

the Mifare Plus [37]. Soules et al. also conducted initial timing tests with the

Mifare DESFire distance-bounding protocol, which I compare to the timing

measurements I collected in Chapter 4.

Distance-bounding protocols have also begun to be implemented in the EMV

protocol in what is called a “Relay Resistance Protocol” [38]. Mastercard

has been the first company to adapt such a protocol into their contactless

smartcards [39].

2.3 Miscellaneous Mifare Research

Because of their popularity in the market, Mifare contactless smartcards

have been a popular area of research. Much of this interest began in 2007,

when Nohl uncovered initial results related to the cryptography used in the

Mifare Classic [40]. Later results of reverse engineering the Mifare Classic’s

“Crypto1” protocol were presented in 2008 by Nohl et al. [41], and similar

vulnerabilities were found by researchers at Radboud University in the same

year [9, 42].

In later implementations of the Mifare Classic, NXP fixed the weak Pseudo-

Random Number Generator (PRNG) in its cards, but in 2015 Meijer and

Verdult showed that the improved PRNG does not fix the inherent flaws

of the underlying Crypto1 cipher [43]. More recent version of Mifare cards,

14

such as the Mifare Plus and Mifare DESFire, use AES and Triple DES block

ciphers rather than Crypto1.

15

16

Chapter 3

Design and Implementation

3.1 ISO 14443

3.1.1 ISO 14443 Overview

Contactless smartcards that work at a short range (0–10 cm) are known as

proximity cards, and many of these cards use one of the two protocols de-

fined in ISO 14443 [2]. This compares to vicinity cards, which operate at a

longer range (0–1 m), and use the protocol defined in ISO 15693 [44]. Both

proximity and vicinity cards derive their power from a reader which sends

out an electromagnetic carrier which is specified to oscillate at a frequency

fc of 13.56 MHz. ISO 14443’s four parts describe everything from the phys-

ical characteristics of proximity cards up to their transmission protocol. It

uses the terms Proximity Coupling Device (PCD) to refer to a reader, and

Proximity Integrated Circuit Card (PICC) to refer to a smartcard.

ISO 14443 describes two types of communication: Type A (ISO 14443A)

and Type B (ISO 14443B). This is due to the combination of the Philips

Mifare standard (Type A) and the Innovatron standard (Type B), making

ISO 14443 two standards combined into one document [45]. In this report,

only Type A communication is considered as both the Mifare Plus and Mifare

17

DESFire are smartcards which adhere to ISO 14443A. In the remainder of

Section 3.1, the details of ISO 14443A as it applies to distance bounding will

be described.

3.1.2 ISO 14443A Physical Layer

Because PICCs are passive devices, they rely upon the PCD for their power.

According to ISO 14443, the PCD should emit a carrier of 13.56 MHz ±
7 kHz. The alternating magnetic field of the carrier then powers the PICC

using inductive coupling. The details of how this power transfer works can

be found in Finkenzeller Chapter 4 [46].

The carrier which the PCD supplies is not only used to power the PICC, but

is also a communication channel. This communication channel (1) allows

the PCD to send messages to the PICC, and (2) allows the PICC to send

messages to the PCD.

1. PCD to PICC Communication – Amplitude modulation is used

by the PCD by turning on and off its carrier in order to send 0s and 1s.

The carrier is turned off (known as a PauseA) for a minimum of 0.5 µs

and a maximum of 3.0 µs (at a bitrate of 106 kbps), and the PICC

remains powered on during this lack of a power source through energy

stored in its inductors and capacitors. This process of communication

is known as 100% ASK (Amplitude Shift Keying). How often the PCD

turns its carrier off is specified by the type of encoding that it uses:

Modified Miller encoding.

ISO 14443-2 defines three sequences that can occur under Modified

Miller encoding: sequence X, sequence Y, and sequence Z, shown in

Figure 3.1. In sequence X, a PauseA of time t1 occurs after half the

bit duration tx, where tb is the bit duration. In sequence Z, a PauseA

occurs at the beginning of the bit duration, while in sequence Y the

carrier is left on for the entire bit period. A logic 1 is a sequence X,

a logic 0 is a sequence Y, a start of communication is sequence Z, and

18

Figure 3.1: Sequences for PCD to PICC communication. Image from
ISO 14443 [2].

an end of communication is a logic 0 followed by a sequence Y. These

sequences of bits are detected and decoded by the PICC.

2. PICC to PCD Communication – The PICC communicates to the

PCD by changing the strength of the carrier wave it has been supplied.

It does this by switching a load resistor on and off, a strategy known

as load modulation. By performing this switching at set times (On-Off

Keying, or OOK), the PICC is able to send 0s and 1s to the PCD,

which detects the change in the carrier strength. The PICC also uses

load modulation to produce a subcarrier which operates at a fraction

of the carrier frequency fc. The PICC only generates this subcarrier

when it is transmitting data, and the subcarrier itself does not contain

any information.

Similar to direction (1), the PICC sends its data using Manchester

encoding. Three possible sequences exist for this encoding: sequence

D, sequence E, and sequence F. In sequence D, the subcarrier is on for

the first half of the bit period, while for sequence E, the subcarrier is on

for the second half of the bit period. For sequence F, the subcarrier is

off for the entire bit duration. This is similar to Figure 3.1, but can be

fully visualized in Figure 3.2 in Section 3.1.3. Sequence D represents a

logic 1 or start of communication, sequence E a logic 0, and sequence F

an end of communication. These sequences are created using OOK, and

the PCD then decodes them to receive the PICC’s message. If there

is a collision, the subcarrier would be on for an entire bit duration,

an invalid sequence which signifies to the reader that there has been a

19

collision.

3.1.3 ISO 14443A Timing

In the first edition of ISO 14443 (2001), the bitrate for communication be-

tween the PCD and PICC was set at fc
128

, or 106 kbps. Two subsequent

versions of the standard have been released, however, and in the most re-

cent version (2016), much faster bitrates are possible for both directions of

communication: 2fc for PCD to PICC, and fc
2

for PICC to PCD. During

initialization and anticollision, however, a bitrate of fc
128

is always used; after-

wards, a higher bitrate can optionally be negotiated. For simplicity’s sake,

the scenario in which a higher bitrate is negotiated is not considered here.

A bitrate of 106 kbps means that the time it takes for a PCD and PICC

to exchange a single bit of information is 9.4 µs. In those 9.4 µs, some-

thing different happens depending upon which direction the communication

is going in. In the case of PCD to PICC communication, the PCD, if the

encoding specified is sequence X or Z, turns off its carrier for a period of up

to 3.0 µs. In the case of PICC to PCD communication, the PICC, if the

encoding specified is sequence D or E, turns its load and subcarrier “on” for

4.7 µs, or half the bit duration. During the 4.7 µs where the load is on, the

PICC subcarrier runs at a frequency of fc
16

= 847.5 kHz, or with a period of

1.18 µs. During those 4.7 µs, therefore, the subcarrier cycles 4 times. To

help visualize these times, an example PCD-PICC transaction is shown in

Figure 3.2.

In Figure 3.2, the PCD first sends a REQuest for type A (REQA) command,

which queries any ISO 14443A PICCs which are within range and is the first

command (other than a WUPA – WakeUP type A command) that occurs

during any ISO 14443A communication. The REQA command is always 0x26

encoded as 7 bits. Any PICC which receives a REQA is required to respond

with 4 bytes of data known as the card’s ATQA (Answer To reQuest type

A). It should be noted that the PICC’s subcarrier in Figure 3.2 is distorted

because of the way the video output of the spectrum analyzer was set up to

20

Figure 3.2: REQA transaction at 13.56 MHz, with timing anno-
tated.

display the signal. If the image was zoomed in, the 4 cycles of the subcarrier

during each bit period would be clearly visible.

Besides the timing of sending individual bits, another important timing con-

sideration is the delay in the communication which occurs between a PCD

and PICC. In ISO 14443-3, the minimum delay time in both directions is

known as the Frame Delay Time (FDT), shown (in one direction) in Fig-

ure 3.2.

For a PICC responding to a PCD request, the FDT changes depending upon

whether the last bit sent by the PCD was a 0 or a 1. If the last bit the PCD

sent was a 0, FDT = (n× 128 + 84) / fc. If the last bit of the PCD sent was

a 1, FDT = (n × 128 + 20) / fc. During the initialization and anticollision

phases, n = 9, so that all PICCs respond synchronously and collisions can

therefore be detected. With n = 9, FDT = 1172 / fc = 86.43 µs if the last

bit was a 0, and FDT = 1236 / fc = 91.15 µs if the last bit was a 1. For

all subsequent communication, n ≥ 9, thereby giving the PICC extra time

to respond if needed. However, the PICC’s response must still be less than

21

the Frame Waiting Time (FWT), as discussed below.

For a PCD sending information to a PICC, the FDT is defined as the time

between the last modulation transmitted by the PICC and the first PauseA

transmitted by the PCD. In this scenario, the FDT must be at least 1172 / fc.

The PCD also has an additional timing constraint, known as the Request

Guard Time, which is the minimum time between the start bits of two con-

secutive REQA commands. It is equal to 7000 / fc.

Another important timing measurement, especially when considering relay

attacks, is the Frame Waiting Time (FWT), or built-in timeout, specified in

ISO 14443-4. The FWT is used by the PCD to “detect a protocol error or

an unresponsive PICC” [2], but in practice it can also be used to prevent

relay attacks that take longer than the FWT. The FWT is calculated using

the formula FWT = (256× 16 / fc)× 2FWI. For Type A, the default FWI of

4 is normally used, giving a FWT of approximately 4.8 ms.

These timing details become important in Sections 3.3 and 3.4, where un-

derstanding how a reader both transmits and receives data is vital to taking

timing measurements and overclocking.

3.2 Proxmark 3

3.2.1 Proxmark 3 Overview

A variety of off-the-shelf contactless smartcard readers are available. Ex-

amples include the ACR122 [47], the SCL3711 USB stick [48], NFC-enabled

smartphones, and the Proxmark 3 [49]. Of these, the most flexible is the

Proxmark 3, which contains both open-source hardware and software, allow-

ing the user to have full control over the functionality it implements. Readers

such as the ACR122 and the SCL3711 utilize open-source software libraries

such as libnfc, as well as the PC/SC API through the pcsc-lite library.

However, their hardware is unknown or based on proprietary reader chips,

22

OS PC	
ClientFPGA

Analog	
Receive	
Path

Analog	
Transmit	
Path

ADC

Antenna

SPI

SSC
UART

8

Figure 3.3: Proxmark 3 block diagram.

such as the NXP MFRC523 or MFRC631 chips. The case is similar for An-

droid applications, which use custom software and NFC libraries, but don’t

give details of the underlying hardware.

This paradigm of readers with closed-source hardware contrasts with the

Proxmark 3, which has both open-source hardware and software. By being

open-source, the user has access to the schematics and circuit diagrams of

the hardware as well as access to a development environment such as an

interface to reflash its FPGA. The Proxmark 3 contains three main compo-

nents: the PC client, the OS, and the transmit and receive path. These three

components and their interfaces can be seen in Figure 3.3.

The Proxmark 3 OS runs on an AT91SAM ARM-based Atmel microcon-

troller. The OS communicates with a PC client over UART to update the

OS firmware and to send and receive USB commands, many of which are

forwarded through the transmit and receive path to communicate with a

contactless smartcard. The Proxmark 3 contains an external antenna, the

receive path of which gets fed into an 8-bit TLC5540 ADC after analog pre-

processing. On both the transmit and receive paths, a Xilinx Spartan-II

FPGA, an XC2S30, is used to perform DSP and implement time-critical

PCD functionality.

Extensions to the Proxmark 3 over the years have implemented functions

such as support for different RFID protocols such as those which use low

frequencies (125–134 kHz). The Proxmark 3 also has the ability to eavesdrop

23

contactless smartcard transactions and emulate an ISO 14443A card. The

Proxmark 3 remains an active project, and I have made all code developed for

this report available to the Proxmark 3 community via its Github repository1.

It should be noted that the Proxmark 3 is an experimental device and is not

the tool of choice for all contactless smartcard applications. For operations in

which a smartcard needs to be personalized, the ACR122 makes implement-

ing custom protocols much simpler than using the Proxmark 3. When trying

to do cryptographic functions, such as CMACs for example, the lack of Lua

cryptography support on the Proxmark 3 makes it much easier to use the

ACR122 reader with Python and the PC/SC API. This is the methodology

I used to setup the Mifare Plus EV1 and Mifare DESFire EV2, the details

of which are described in Appendix A.

However, the Proxmark 3 is a powerful tool for time-critical experiments and

the main tool which I used. In Section 3.2.2, the software of the Proxmark

will be described, with emphasis given to the communication between the

Proxmark’s PC client and OS. In Section 3.2.3, the transmit and receive path

of the Proxmark will be covered in detail, including the FPGA functionality

and DSP (digital signal processing).

3.2.2 Proxmark 3 Software

The standard user interface for the Proxmark 3 is the PC client’s command-

line tool, proxmark3. The PC client is written in C and allows the user

to send various commands to a contactless smartcard and receive the cor-

responding response. The most basic PC client ISO 14443A command is

hf 14a raw, which allows the user to control exactly which bits get sent to

the PICC. Typing hf 14a raw -b 7 -a 26, for example, makes the Prox-

mark 3 transmit a REQA command, or 0x26 as 7 bits.

The PC client includes more complicated functionality, such as getting the

1As an example, the accepted pull request for my Mifare Plus script can be seen here:
https://github.com/Proxmark/proxmark3/pull/593

24

https://github.com/Proxmark/proxmark3/pull/593

keys off a Mifare Classic, much of which is implemented in C, and some of

which is implemented via Lua scripts. I used this functionality to replicate

old Mifare Classic attacks implemented on the Proxmark 3, such as extracting

the private keys from my University of Cambridge ID card (a Mifare Classic

4k) and dumping the card’s memory.

So, how do the PC client and OS interact? As was previously shown in

Figure 3.3, once the client has sent its packets over the UART, they are read

and processed by the Proxmark 3 OS. The communication channel between

the Proxmark 3 client and the Proxmark 3 OS is a custom protocol in which

UsbCommand structs are exchanged. In a UsbCommand struct, arg[0] has

the flags which hold information about what is being sent. For example,

if the PC client wants the OS to send a sequence of raw bytes out over

its interface, ISO14A_RAW is integrated into arg[0]. Similarly, if the OS

should keep providing a smartcard with power even after sending it raw

bytes, ISO14A_NO_DISCONNECT is integrated into arg[0].

For implementing any large amount of functionality, it is desirable to chain

Proxmark 3 commands together using some sort of scripting language. I

attempted to integrate Python with the Proxmark 3’s C code, but after

encountering difficulty decided to use the built-in Lua functionality instead.

The glue which connects the Lua and C code together is contained in the

scripting.c file, which maps Lua commands to native C commands which

then get sent to the Proxmark 3 OS.

In order to communicate with the Mifare Plus EV1 and Mifare DESFire EV2

and implement their distance-bounding protocols, I created Lua scripts and

integrated them into the Proxmark 3 project. I have made both the Mifare

DESFire and Mifare Plus scripts available to the Proxmark 3 community via

Github (see above footnotes). Both scripts used the Lua library read14a.lua

in order to set up an ISO 14443A connection and perform all necessary

anticollision steps. I also made it possible to send raw bytes to the smartcard

in Lua, using a similar user interface to that of the hf 14a raw command.

The card setup I performed to be able to do the Proximity Check on the

Mifare Plus and Mifare DESFire is described in detail in Appendix A.

25

3.2.3 Proxmark 3 Hardware

The Proxmark 3 OS has two ways of communicating with the Spartan-II

FPGA. The first is over a SPI (Serial Peripheral Interface), and the second is

over an SSP interface (Synchronous Serial Port), as was previously shown in

Figure 3.3. The SPI is normally used only to send configuration information

from the OS to the FPGA. The FPGA can be told to, for example, act as a

reader or emulate a card. Depending upon what configuration information

the FPGA receives from the OS, it changes the section of Verilog code which

it uses via a multiplexer. Normally, the SPI is not used to send information

from the FPGA to the OS. However, I added functionality for sending precise

timestamps from the FPGA to the OS over SPI, the implementation of which

will be described in Section 3.3.2.

Data that actually gets sent to and received from the contactless smartcard

is sent over the SSP. This data gets transferred at a rate determined by

ssp_clk, which is a clock produced by the FPGA and is equal to fc
16

, where

fc is the frequency of the oscillator used by the FPGA, normally 13.56 MHz.

This makes it so that ssp_clk’s period of fc
16

is 8 times the ISO 14443 bitrate,
fc
128

, previously described in Section 3.1.3, allowing 8 bits of data to be sent

over the SSP for each ISO 14443 bit period.

As an example, the OS would send 00001100 to the FPGA to send out a

sequence X (active low – turn off the carrier after half a bit period). For

receiving data, the OS would take 8 ticks of ssp_clk to receive 00001111,

which would represent a sequence E (modulation with subcarrier during sec-

ond half of the bit period). These bits of data are already in their encoded

form because the encoding and decoding is done by the OS. The OS first

encodes data using Modified Miller encoding, and whenever it receives data

over SSP, immediately decodes that data using Manchester decoding.

If the bitrate was to be increased to fc
64

, fc
32

, or any of the other speeds possible

in the latest version of ISO 14443, the frequency of ssp_clk would have to be

increased as well. This would be possible, but the bitrate would eventually

be limited by the processing limitations of the AT91SAM. As was previously

26

15 20 25

s

-1

-0.5

0

0.5

1

1.5

2

2.5

3

V

(a) Signal after analog peak de-
tection. The 13.56 MHz carrier
is still present.

15 20 25

s

-1

-0.5

0

0.5

1

1.5

2

2.5

3

V
(b) Output of the ADC (top)
and output of the Gaussian
derivative filter input (bottom).

Figure 3.4: Proxmark 3 analog receive path and DSP at fc = 13.56 MHz.

mentioned in Section 3.1.3, I did not extend the Proxmark 3 to implement

bitrates higher than fc
128

.

The analog hardware which is included on the Proxmark 3 is also of vital

importance when considering communication with contactless smartcards.

The analog circuitry of the Proxmark is available as open-source Eagle files,

and its operation can be visualized using a Spice simulation. To conduct this

Spice simulation, I used LTSpice with the Proxmark 3 front end circuitry2.

The input given to the circuit simulates a PICC turning on its subcarrier for

4.7 µs, or half a bit period (at 106 kbps). During those 4.7 µs, the subcarrier

is turned on and off 4 times to simulate the 4 cycles of the 847.5 kHz signal

which would occur during half a bit period. The output of the Proxmark 3’s

peak detection analog circuitry from the Spice simulation can be seen in

Figure 3.4a. In this plot, the 4 cycles of the subcarrier can clearly be seen.

To further visualize the Proxmark front end, I used 1-dimensional interpo-

lation in Matlab to simulate sampling the output shown in Figure 3.4a at

the carrier frequency fc. By doing so, I was able to replicate the step the

2The .asc file used for the LTSpice simulation was taken from the Proxmark 3 forums:
http://www.proxmark.org/forum/viewtopic.php?id=1797

27

http://www.proxmark.org/forum/viewtopic.php?id=1797

Proxmark 3 ADC takes to get rid of the 13.56 MHz carrier. The result of

this output is shown in the top plot of Figure 3.4b.

Another important DSP step the Proxmark 3 takes before performing edge

detection is digital filtering. The FPGA’s DSP filter, which has five taps and

an impulse response which is the derivative of a Gaussian normal distribution,

prepares the signal to be edge detected in order to detect whether a load

modulation has occurred or not. The output of the digital filter can be seen

in the bottom plot of Figure 3.4b. Applying the digital filter centers the

subcarrier at 0 and makes it a sine wave which cycles four times.

Next, the FPGA uses the sine wave to look for both a significant rising and

falling edge (based on the EDGE_DETECT_THRESHOLD) during each 1
8

of the bit

period. If both a significant rising and falling edge occur during the 1
8

of the

bit period, the FPGA detects a load modulation and sets the curbit signal

high. Then, curbit is sent back to the OS on the next tick of ssp_clk to

communicate that a PICC modulation was detected. For the example shown

in Figure 3.4, the FPGA would detect curbit as ...00111100..., which

would then get sent to the OS to decode.

3.3 Distance Bounding Timing Measurements

3.3.1 Mifare Proximity Check

The details of the Mifare DESFire EV2 proximity check were previously re-

verse engineered by Soules et al. in 2017 [37]. Additionally, NXP research [50]

and patents [51] have pointed towards the use of a similar distance-bounding

protocol to that which Soules et al. discovered. Given this information, the

details of the Mifare Plus EV1 and Mifare DESFire EV2 distance-bounding

protocol (“Proximity Check”) are presented in Figure 3.5.

In Figure 3.5, the Mifare Proximity Check is broken down into three phases:

PreparePC, Proximity Check, and VerifyPC. During PreparePC, the PCD

sends the byte 0xF0 to the PICC, to which the PICC responds with a status

28

Prepare	Proximity	Check
(PreparePC)

PCD PICC

Proximity	Check

Verify	Proximity	Check
(VerifyPC)

.	.	.	

0xF0

0xF2|	Len|	pRndA

pRndB

SC	|	OPT	|	pubRT (|	PPS1)

0xFD	|	MAC

SC	|	MAC

Figure 3.5: Mifare proximity check, used on the Mifare Plus EV1 and
Mifare DESFire EV2.

code (SC), an option byte (OPT), and its published response time, tadv. This

advertized time is two bytes, sent MSB first, which specify in µs the amount

of time the PICC claims it will take to respond to a command sent during

the Proximity Check phase. For the three different Mifare Plus EV1 cards

and the single Mifare DESFire EV2 tested, I found that tadv = 1696 µs (at

a bitrate of 106 kbps).

Next, the Proximity Check phase begins. At this point, both the PCD and

PICC have drawn 8-byte random numbers RndA and RndB respectively.

During the “rapid exchange” phase, the PCD sends its 8 bytes of RndA in

chunks of whichever size it decides, sending 0xF2 followed by the length of

pRndA, followed by pRndA. To more easily implement the Proximity Check,

the size of pRndA will usually be a constant 1, 2, 4, or 8 bytes, although it

does not have to be.

The PICC then responds with pRndB, which is the same number of bytes

of RndB as the length of pRndA. The amount of time the PICC takes to

respond is supposed to be as close as possible to tadv, and is recorded by the

PCD in order to calculate how far away the PICC is from the PCD. It does

29

this using the speed of light and factoring in the PICC’s delay time, tdly.

The final phase is VerifyPC, where the bytes exchanged during the Proximity

Check phase are verified by both the PCD and PICC. Message Authentica-

tion Codes (MACs) are exchanged which are calculated using the VCProx-

imityKey of the card and the CMAC mode of MAC calculation with the AES

block cipher.

In relation to other distance-bounding protocols, the Mifare Proximity check

is most similar to the Brands-Chaum protocol described in Section 2.2 [28],

where verification occurs at the end of the rapid bit exchange. However,

instead of having a “rapid bit exchange” where individual bits are exchanged,

the Mifare Proximity Check exchanges individual bytes.

3.3.2 Measuring Timing Using the Proxmark 3

As was previously discussed in Section 2.2, precise timing measurements are

vital for implementing an effective distance-bounding protocol. Therefore,

this section will explain how I took precise timing measurements on the

Proxmark 3 for both the Mifare Plus and the Mifare DESFire. The results

of measuring timing during the distance-bounding protocol will be presented

in Section 4.1.

From the PICC’s perspective, as soon as it receives the last expected bit of

pRndA or the last bit of pRndA’s ISO 14443-4 CRC epilogue, it waits tdly

before sending out pRndB, as shown in Figure 3.6. It is unclear which of

these two events the PICC uses as a time reference. In theory, tdly = tadv.

However, as long as tdly has a low variance, its relation to tadv is unimportant.

As long as the PICC is consistent in the amount of time it takes to respond

to a request sent during the “rapid exchange” phase, the PCD can adjust

its timing thresholds accordingly, learning off of previous exchanges used for

calibration.

The one-way delay time it takes to send a signal between a PCD and PICC,

tair, shown in Figure 3.6, also needs to be taken into account. In a successful

30

𝑡"#$ 𝑡%&' 𝑡"#$

𝑡()(

PCD	sends	
out	last	
bit

PICC	
receives	
last	bit

PICC	
sends	out	
first	bit

PCD	
receives	
first	bit

Figure 3.6: Visualization of timing as it relates to PCD timestamps. ttot is
the timestamp recorded by the PCD.

implementation of a distance-bounding protocol, the distance d, where d =

tair · c, should be limited to, for example, 1 m, where c is the speed of light in

a vacuum. Depending upon the precision of the PCD timing measurement,

however, tair may not be capable of bounding a user to such a small distance

as 1 m.

From the PCD’s perspective, as soon as it sends out the last bit of its CRC

on its pRndA, it starts a timer. It stops that timer when it receives the

first bit of pRndB from the PICC. The resulting difference in time is ttot, as

shown in Figure 3.6. ttot is given by the equation:

ttot = 2 · tair + tdly (3.1)

Because the distance at which a relay attack can be conducted is d = tair · c,

tair = d
c
. Substituting this into and rearranging Equation 3.1, we get:

d =
c · (ttot − tdly)

2
(3.2)

The Proxmark 3 was used to record ttot. On the Proxmark 3, accurate timing

measurements can be taken using two methodologies.

The first is to use the AT91SAM in the Proxmark 3 OS to take a start

timestamp immediately after the last bit of data gets sent out over the SSP

to the FPGA. A stop timestamp can then be taken as soon as the first bit

of data is received from the PICC over the SSP from the FPGA. Timing

31

measurements using this methodology are simple to implement, but are not

ideal because they depend upon the underlying software details of the OS,

as well as microarchitectural considerations of the AT91SAM’s ARM7TDMI

processor such as pipelining.

The second methodology is to take the timestamps directly on the FPGA,

and later use either the SPI or SSP interfaces to send the data back serially to

the OS. This method is preferable to the first because it depends solely upon

hardware, and is therefore easier to assure to be accurate. However, using

an FPGA to collect timestamps does not provide a level of precision high

enough to perform extremely sensitive distance-bounding, especially given

that the clock used for time measurements was only 16 MHz. Despite this

limitation, this methodology was the most accurate, and is the methodology

I used to take the measurements in Section 4.1.

For implementing the second methodology, I needed to change the Verilog

code on the Spartan-II. For generating the Spartan-II bitfile, I used Xilinx

ISE Version 10.1 because of lack of Spartan-II backwards compatibility in

newer versions of ISE. I added three pieces of functionality to the FPGA:

(1) I created a 16 MHz clock signal, derived from a 48 MHz clock input, (2) I

added the ability to send data from the FPGA to the OS over SPI, and (3) I

added the ability to count clock cycles which correspond to ttot. Once I took

the measurements, I calculated the actual ttot by multiplying the number of

clock cycles collected with the period of the corresponding clock.

1. Clock Generation – The 16 MHz clock was derived from pro-

grammable clock 0, pck0, the AT91SAM’s programmable clock I pro-

grammed in the OS to run at a frequency of 48 MHz by writing to

the AT91SAM’s programmable clock register (details will be provided

in Section 3.4). I then divided pck0 by 3 in the Verilog code using a

counter. Changing the clock source on the FPGA to be the 16 MHz

clock rather than the normal 13.56 MHz clock ended up being difficult

because of obscure Xilinx errors, so I consolidated all the high frequency

(HF) Verilog code, which is normally divided amongst multiple files,

into a single file, fpga_hf.v. In this file, I only kept the code which

32

was necessary to implement an ISO 14443A reader and take precise

timing measurements.

2. FPGA to OS SPI Communication – Normally, the Proxmark

SPI interface is only used for sending configuration data to the FPGA

via the OS. Therefore, the SPI interface had already been configured

to have the AT91SAM act as the SPI master and the FPGA as the

SPI slave. The Proxmark SPI channel uses four pins: NCS, SPCK,

MISO, and MOSI. The MISO pin to send data back to the AT91SAM,

therefore, is normally unused on the Proxmark. However, there needed

to be a way for the FPGA to send the precise timestamps collected in

(3) to the OS to be recorded.

The Proxmark SPI connection gets set up in fpgaloader.c, and the

FpgaWriteConfWord() method is used to send data over SPI which

contains the FPGA setup word as 16 bits. This setup word determines,

amongst other things, what major mode the FPGA is in (reader, emu-

late, or eavesdrop). SPCK is the clock used for the SPI communication

generated by the AT91SAM, and has a baud rate of MCK / 6 = 4 Mbps,

where MCK is the AT91SAM’s 24 MHz master clock. NCS is a chip

select/slave select pin for the SPI, and is active low. That is, whenever

it is low, SPI data is being transferred.

The AT91SAM SPI has two holding registers: the Transmit Data Reg-

ister SPI_TDR and the Receive Data Register SPI_RDR. It also contains

a single Shift Register which actually does the sending and receiving

over the SPI interface. All of these registers are 32 bits, but only 16

of those bits are used for data transfer on the Proxmark. On the SPI,

transmission and reception occur at the same time; whenever new data

is written into SPI_TDR, data is also received in SPI_RDR. SPI_RDR

can then be read by the OS to receive the timestamp collected by the

FPGA.

3. Collecting Timestamps – On the FPGA, it was desirable to collect

timestamps at the highest resolution possible to get the highest pre-

33

cision. For this purpose, the fastest clock available was pck0, which

runs at 48 MHz and would give a precision of about 20 ns. The actual

clock I used, however, was the 16 MHz division of pck0 generated in

(1). I used this clock in place of the 48 MHz clock in order to avoid

overflowing the 16-bit counter used to collect the timestamp. In order

to prevent overflowing vulnerabilities which this implementation might

introduce, an operational reader should trigger an interrupt whenever

the 16-bit counter overflows.

In order to collect timestamps on the FPGA, I did three things: (a)

I collected a start timestamp when the Proxmark finished sending its

data to the PICC, (b) I collected an end timestamp when the Prox-

mark received the first bit of data from the PICC, and (c) I sent that

timestamp back to the OS over the SPI interface to later be reported

to the PC client.

(a) Start Timestamp – I reset the start timestamp every time the

data received over the SSP from the OS, ssp_dout, went high.

Because ssp_dout was configured to be active low (i.e. a 0 meant

the carrier was on), whenever ssp_dout was 1, that meant the

carrier was being turned off in order to perform ASK modulation.

By detecting this event, the start timestamp was reset to the last

time the carrier signal sent by the PCD went low, allowing the

timestamp to be started at the last bit of the ASK communication.

(b) End Timestamp – I collected the end timestamp as soon as a

load modulation was detected in the data received from the PICC.

The details of how the PCD detects this load modulation were

previously covered in Section 3.2.3, but whenever a modulation

is detected, the FPGA’s curbit signal goes high. Therefore, the

first time curbit went high, the running timestamp started in

(a) was stopped. The delay of curbit as compared to the analog

PICC response will be shown in Figure 4.2 in Section 4.3.

(c) Timestamp Reporting – I used the OS to poll the timestamp

34

Figure 3.7: Eavesdropping a Mifare DESFire REQA
transaction using a near-field probe hooked up to a
spectrum analyzer.

collected in steps (a) and (b) by writing to the SPI and conse-

quently reading and printing the 16-bit timestamp (SPI reads and

writes need to occur together, as described in (2)).

In order to verify that the timing measurements taken on the FPGA were

accurate, I wirelessly eavesdropped transactions using the available FSV7

spectrum analyzer using a near-field probe. The spectrum analyzer was

used in zero-span mode with a bandwidth of 5 MHz and a center frequency

of 13.56 MHz, similar to the configuration previously shown in Figure 3.2.

An example of eavesdropping a smartcard transaction using the spectrum

analyzer can be seen in Figure 3.7.

I used the cursors on the spectrum analyzer for a few distance-bounding

exchanges to compare the results with what was measured with the Prox-

mark 3. Seeing that the results were close to each other (<5% difference), I

gained confidence in the accuracy of the FPGA timing measurements. More

tests could have been conducted using this methodology, but manually taking

timing measurements on the spectrum analyzer proved to be tedious.

35

3.4 Overclocking

3.4.1 Changing the Proxmark 3 Clock

In order to overclock a contactless smartcard using the Proxmark 3, I needed

to change the Proxmark 3’s carrier frequency. In the Proxmark 3 FPGA code,

all the processing is synchronous to a single clock, osc_clk. This clock is

used to control the speed at which the SSP transfers data between the OS and

the FPGA, as well as the frequency at which the ADC is sampled. Normally,

osc_clk is generated by a 13.5600 MHz external oscillator and connected to

the Proxmark 3 through the FPGA’s ck_1356meg signal. However, osc_clk

can be set to any clock source.

The two ways I generated a clock to be used as osc_clk were to (1) use the

already-present PLL on the AT91SAM, and to (2) use a function generator

to generate an external clock. An easier option would have been to use some

sort of phase-locked loop (PLL) on the FPGA. However, the Spartan-II lacks

a PLL and only has a delay-locked loop (DLL) which is capable of multiplying

a clock by 2.

1. Using the AT91SAM PLL – Using pck0 to generate a 16 MHz

clock on the FPGA was previously discussed in Section 3.3.2. To use

16 MHz as the carrier frequency, I set osc_clk equal to the division

of the 48 MHz pck0, pck_clkdiv. However, I did not program pck0

to be a frequency above 48 MHz due to limitations in the AT91SAM’s

clocking system. The AT91SAM’s programmable clock is based on its

PLL and corresponding PLL clock, PLLCK. PLLCK is based on MAINCK,

the Proxmark 3’s 16.00 MHz external oscillator. PLLCK is generated

from MAINCK by passing a multiplier and divider to the CKGR_PLLR

register.

Normally, the Proxmark 3 code sets PLLCK as MAINCK × 6 = 96 MHz.

Then, programmable clock pck0 is set through the PMC_PCKR register

to equal PLLCK / 4 = 24 MHz. By instead dividing PLLCK by 2, I set

36

pck0 equal to 48 MHz. pck0 can also be set to PLLCK / 1, which would

have allowed a granularity fine enough to make pck_clkdiv equal to

19.2 MHz, rather than the 16.0 MHz frequency which was actually

used.

If PLLCK is set to anything above 96 MHz, however, things become

more complicated due to other modules which use PLLCK, such as USB.

The AT91SAM’s USB clock is always based on the PLL clock. There-

fore, the PLL needs to run at a certain frequency (48 MHz, 96 MHz,

or 192 MHz) in order for USB communication to work. For fear

of irreversibly damaging USB communication with the Proxmark PC

client, I kept PLLCK, and thereby the USB clock, at 96 MHz. If a fre-

quency of 192 MHz had been fed to the FPGA over pck0, however, the

FPGA would have been capable of achieving carrier frequencies such

as 17.45 MHz.

2. Using an External Clock – A simpler way of generating a variable

clock to be used as the FPGA’s osc_clk was to use an external clock

source. By using a function generator hooked up to Test Pin 7 (TP7)

of the Proxmark 3, I was able to use a variable clock as an input to

the FPGA, providing an easily tunable frequency. I used TP7 on the

Proxmark 3 as a normal FPGA I/O pin, dbg, and then used that input

for clocking all the FPGA registers by connecting dbg and osc_clk

together.

However, I needed to make certain considerations when using an exter-

nal oscillator as the clock source for the Spartan-II. In the Spartan-II,

the I/O logic levels are by default set to LVTTL, specifying the use of

TTL logic levels. With LVTTL on the Spartan-II, a 0 is considered

any voltage from −0.5–0.8 V, while a 1 is considered any voltage from

2.0–5.5 V. Given this, a function generator needs to be able to create a

sine wave with a peak-to-peak voltage swing of at least 1.2 V to toggle

a signal between a 0 and a 1.

This required voltage swing made the available Agilent 81180A function

37

generator an ideal tool to use as it has a maximum peak-to-peak voltage

of 2 V and a sampling rate of 10 MHz to 4.2 GHz. However, the 81180A

has a maximum offset of 1 V, giving it, at most, a voltage swing of

0 V to 2 V. Because this is insufficient to be used as a clocking logic

input to the Spartan-II, I put the 81180A in series with a 1.5 V DC

power supply to provide a 1.5 V DC offset. This was safe because

the DC power supply’s earth ground was not connected to the circuit

ground, preventing a short circuit between the power supplies from

occurring. By setting the 81180A offset to 0 V and using its AC driver,

the resulting sine wave produced and fed into the FPGA had a voltage

swing of 0.5 V to 2.5 V.

3.4.2 Analog Considerations of Overclocking

When increasing the carrier frequency used with a contactless smartcard,

I needed to consider the signal strength and characteristics of the antenna

along with the Proxmark 3 front-end analog circuitry. Although the Prox-

mark 3 is open-source, there is no standardized antenna. However, certain

manufacturers of the Proxmark 3 ship antennas with their particular version.

The Proxmark 3 used for testing was purchased from RyscCorp, so the Rysc-

Corp antenna was the primary antenna I used. However, I also successfully

used other antennas, which are shown in Figure 3.8.

The difference between the RyscCorp antenna and the antennas shown in

Figure 3.8 is that the RyscCorp antenna has capacitors on it to help it reach

a certain tuning frequency. This tuning frequency can be adjusted via a

switch on the RyscCorp antenna which either adds or takes away a parallel

capacitor C3. The circuit diagram of the RyscCorp antenna can be seen in

Figure 3.9.

When understanding why certain antennas work and others do not, the the-

ory discussed in Finkenzeller Chapter 4 can help [46]. The simplest way to

model a loop antenna is as an inductor. When a PCD’s carrier is placed

next to a PICC, the power transfer which occurs can be modeled as two in-

38

Figure 3.8: Antennas used
with a frequency of 13.56 MHz
other than the RyscCorp an-
tenna.

C3

Coil

Receive

Transmit

C5 C6

Figure 3.9: Circuit diagram of the RyscCorp antenna.

39

ductors transferring power through Faraday’s law, similar to a transformer.

These inductors have a certain coupling coefficient, k, which determines how

efficiently the inductors transfer power to each other.

The geometric properties of the PICC, besides its orientation and distance

from the PCD, are a constant. Contactless smartcards are PICCs which

adhere to ISO 14443-1 Class 1, which means their antennas have a length

of 64 to 81 mm and a width of 34 to 49 mm, working out to a perimeter

of 196 to 260 mm. The winding of this antenna does not have to be in the

shape of a perfect rectangle, and can vary depending upon the manufacturer’s

implementation. The inductance of a loop antenna is given by L = N2µ0R ·
ln(2R

d
), where R is the radius of the conductor loop, d is the diameter of

the wire used, N is the number of windings, and µ0 is the magnetic field

constant.

The PCD antenna, on the other hand, can be changed. Steps can be taken

to change its dimensions, number of windings, and wire diameter. Addition-

ally, capacitors can be added to the antenna circuit to change its resonant

frequency, as is done with the RyscCorp antenna. The resonant frequency of

an antenna is given by 1
2π

√
LC

, where L is the inductance of the loop and C

is the parallel capacitance.

To test the tuning frequency of the antenna, I swept a sine across a range of

different frequencies to see at which frequency the antenna was most resonant.

This functionality is normally conducted by a vector network analyzer, but

I manually implemented it using a function generator and an oscilloscope. I

used this methodology to test the tuning of the RyscCorp antenna as well as

the antennas in Figure 3.8. The circuit diagram used for tuning can be seen

in Figure 3.10.

I performed the antenna tuning using the Agilent 81180A with a start fre-

quency of 10 MHz, an end frequency of 30 MHz, and a sweep time of 10.0 µs.

The output of this antenna tuning test can be seen in Figure 3.11. As the

figure shows, the RyscCorp antenna with C3 in parallel is resonant at a fre-

quency close to 13.56 MHz, which is expected given the desire to be compliant

40

OScope Signal

47pF Antenna

330 ohm

Agilent 81180A

OScope Gnd

Figure 3.10: Circuit diagram used for antenna tuning.

with ISO 14443. The tuning frequency without C3 in parallel was slightly

higher – around 14 MHz – because of the lower capacitance which means a

higher resonant frequency by the equation 1
2π

√
LC

.

To experiment with overclocking a card, I finely tuned the carrier frequency

of the PCD using a function generator and the external clock setup previously

described in Section 3.4.1. To ensure the card was still responding, I sent

REQAs and then eavesdropped the corresponding communication using a

spectrum analyzer in zero-span mode connected to a near-field probe. If

the PICC still performed load modulation to send its ATQA, similar to the

output previously shown in Figure 3.2, the card was determined to be working

properly.

Looking at the output on the spectrum analyzer, I saw that the Mifare Plus

and Mifare DESFire were still responding at frequencies such as 16 MHz, but

that the Proxmark 3 receive path was not properly decoding the PICC’s load

modulation. In order to fix this, I increased the EDGE_DETECT_THRESHOLD in

the Proxmark 3’s FPGA code to 40, rather than the value of 5 it is normally

at. Making this change increased the sensitivity of the Proxmark 3’s edge

detection on the sine wave previously described in Section 3.2.3. Such a

change made the Proxmark 3 more likely to have bit errors, but also allowed it

to decode weaker signals, which was necessary for decoding higher frequency

41

Figure 3.11: RyscCorp antenna tuning with C3 in
parallel. Horizontal axis goes from 10 MHz–30 MHz.

signals which were weaker due to their frequency being different from the

RyscCorp antenna’s resonant frequency.

However, there was a certain frequency at which the spectrum analyzer

clearly showed that the Mifare Plus and Mifare DESFire stopped responding

to REQA commands. There are two possible reasons for such a limit. The

first is that the PICC no longer receives a strong enough power supply from

the PCD to properly respond. If this is the case, the properties of the an-

tenna come into question. The second is that some sort of internal circuitry

in the PICC prevents a higher frequency from being used. The captured

traces in Figure 3.12 demonstrate that the latter possibility is most likely.

In Figure 3.12, the Mifare DESFire is run at two frequencies near its dis-

covered limit of 16.30 MHz. At 16.30 MHz (Figure 3.12a), the DESFire

successfully responds to a REQA command with a strength of 56 mV on

the near-field probe used (relative, not absolute strength). At 16.40 MHz

(Figure 3.12b), the RyscCorp capacitor C3 is taken out of parallel and the

DESFire is sent the same request, this time with a relative strength of 88 mV.

However, the card does not respond, even though the signal sent to the card

42

(a) Mifare DESFire REQA
request and response at
16.30 MHz, with C3 in par-
allel. The card successfully
responds with its ATQA.

(b) Mifare DESFire REQA re-
quest at 16.40 MHz, without C3
in parallel. Even with higher sig-
nal strength, the card no longer
responds.

Figure 3.12: Frequency limitations of the Mifare DESFire. Note the vertical
scales are different.

has a higher strength – a phenomenon which only occurs at frequencies above

16.30 MHz. A similar phenomenon occurred with the Mifare Plus at a fre-

quency approximately 200 kHz higher, giving it a maximum frequency of

16.50 MHz. Implications of these results are discussed in Section 4.2.

43

44

Chapter 4

Results and Evaluation

4.1 Timing Measurements

Distance-bounding timing measurements were taken on both the Mifare Plus

EV1 and the Mifare DESFire EV2. These results were taken using the FPGA

timing method and the 16 MHz clock previously described in Section 3.3.2.

Because the timing measurements were taken with a 16 MHz clock, their

granularity was 62.5 ns. Therefore, all the times, reported in µs, are only

reported to a precision of 100 ns. Given the speed of light in a vacuum, a

granularity of 100 ns corresponds to a round-trip distance of 30 m. Similarly,

a granularity of 62.5 ns corresponds to a round-trip distance of 18.75 m,

which would allow a card to be bounded to a one-way distance of 9.38 m.

Using a granularity of 100 ns, the Proxmark 3 can be used to prevent relay

attacks which aim to send a signal over a one-way distance greater than 15 m.

The results of the timing measurements for both the Mifare Plus and Mifare

DESFire can be seen in Tables 4.1 and 4.2.

The experiments conducted to produce the results in Tables 4.1 and 4.2 were

run with a RndA of 0001020304050607, and the PICC was placed directly

on top of the RyscCorp antenna. Additionally, trials were run with RndA

sent as 1 round, 2 rounds, 4 rounds, and 8 rounds. Furthermore, the Mifare

45

Num
Rnds Rnd 1 Rnd 2 Rnd 3 Rnd 4

1 1.5855± 0.0000 – – –
2 1.5997± 0.0000 1.6091± 0.0000 – –
4 1.6185± 0.0000 1.6233± 0.0000 1.6280± 0.0000 1.6327± 0.0000
8 1.6232± 0.0000 1.6327± 0.0000 1.6280± 0.0000 1.6280± 0.0000

Num
Rnds Rnd 5 Rnd 6 Rnd 7 Rnd 8

8 1.6280± 0.0000 1.6280± 0.0000 1.6421± 0.0000 1.6421± 0.0000

Table 4.1: Mifare Plus EV1 Proximity Check response times, in ms, with
fc = 13.56 MHz.

Num
Rnds Rnd 1 Rnd 2 Rnd 3 Rnd 4

1 1.6504± 0.0000 – – –
2 1.6646± 0.0003 1.6742± 0.0004 – –
4 1.6742± 0.0005 1.6882± 0.0003 1.6837± 0.0005 1.6976± 0.0000
8 1.6886± 0.0006 1.6885± 0.0005 1.6837± 0.0005 1.6931± 0.0005

Num
Rnds Rnd 5 Rnd 6 Rnd 7 Rnd 8

8 1.6931± 0.0005 1.6931± 0.0005 1.6979± 0.0005 1.6977± 0.0003

Table 4.2: Mifare DESFire EV2 Proximity Check response times, in ms,
with fc = 13.56 MHz.

Proximity Check was run immediately after the initialization and anticollision

phases of communication, which mimics an operational implementation of

the Proximity Check. Means and standard deviations were calculated after

running the distance-bounding protocol 15 times with each configuration.

Experiments were run on a single sample of the Mifare Plus EV1, and a

single sample of the Mifare DESFire EV2.

As can be seen in Tables 4.1 and 4.2, the times for the Mifare Plus and Mifare

46

DESFire differ quite a bit from the tadv of 1.696 ms presented in Section 3.3.1.

While both cards claim to have a tdly of 1.696 ms, the results show that tdly

must in fact be lower.

Additionally, the response time of both cards for different configurations

is quite different. If a single 8-byte chunk is sent to the Mifare Plus, for

example, the card responds in 1.5855 ms. When the first 1-byte chunk in

a series of chunks is sent, however, the card takes 1.6232 ms to respond. I

have no logical explanation for this difference in timing other than a strange

implementation detail in the card’s firmware. I give the same explanation to

the fact that the PICC’s response time increases as it sends out sequential

parts of RndB. When sending 8 bytes in 8 rounds with the Mifare Plus, for

example, the PICC takes 1.6232 ms to respond to the first round, but takes

1.6421 ms to respond to the last round. This difference in timing provides

no clear advantage in distance bounding.

It is also interesting that the Mifare DESFire takes longer to respond to

distance-bounding requests than the Mifare Plus does. Soules et al. [37]

also conducted round-trip time measurements of the Mifare DESFire EV2,

sending RndA over 1 round and measuring a RTT of 1.64 ms. This comes

extremely close to the 1.6504 ms recorded using the Proxmark 3, further

validating the measurements presented here.

What is most important with the Mifare Plus measurements is the fact that

the variance in the measurements is extremely low with the experimental

setup used; zero for the level of precision at which these measurements were

taken. The standard deviations in the Mifare DESFire were slightly higher

than in the Mifare Plus, but can still be used to make the distance-bounding

protocol effective enough to limit a card to a one-way distance of 15 m. As

discussed in Section 3.3.2, this points to a good implementation by NXP.

To deal with timing variations which might occur amongst different cards,

an ideal way of implementing a distance-bounding protocol in a large system

would be to make the timing constraints unique to the card with which the

reader is communicating. That is, when a card is first registered into a sys-

47

tem, timing measurements can be taken on the card which record its expected

response time to distance-bounding requests, similar to the results shown in

Tables 4.1 and 4.2. Then, the reader can base distance-bounding measure-

ments on the experimental ttot of each card rather than the potentially inac-

curate tadv. Further tests would need to be conducted to see whether a card’s

timing results change over its lifetime, which is an important consideration

when implementing such a scheme.

4.2 Overclocking Results

The Mifare Plus EV1 still responded to REQA commands at a frequency of

up to 16.50 MHz, while the Mifare DESFire EV2 responded at a frequency of

up to 16.30 MHz. Additionally, the Mifare Plus responded at a frequency as

low as 10.56 MHz, while the Mifare DESFire responded at a frequency as low

as 10.85 MHz. This existence of both a minimum and maximum operating

frequency at almost exact distances from the assumed center frequency of

13.56 MHz suggests internal circuitry used in the cards which, for the Mifare

Plus allows an fc of 13.56 MHz ± 3.0 MHz, and for the Mifare DESFire

allows 13.56 MHz ± 2.7 MHz (assuming the center frequency is 13.56 MHz).

It is possible that the center frequency is slightly different than 13.56 MHz,

and also that the center frequency shifts due to manufacturing variability

and center frequency shifting which occurs with card age or operating tem-

perature and other environmental effects. This can also help explain the

large range of frequencies which the Mifare DESFire and Mifare Plus allow;

the manufacturer might leave some component tolerances to account for such

variability.

Using the Mifare Plus EV1 maximum frequency of 16.50 MHz and the Mi-

fare DESFire EV2 maximum frequency of 16.30 MHz, the distance-bounding

protocol was rerun and the resulting timing measurements were recorded us-

ing the same experimental setup as Section 4.1. At these frequencies, the

speedup of the Mifare Plus should be 16.50 MHz
13.56 MHz

= 1.2168, while the speedup

48

Num
Rnds Rnd 1 Rnd 2 Rnd 3 Rnd 4

1 1.3019± 0.0000 – – –
Speedup 1.2178 – – –

2 1.3135± 0.0000 1.3213± 0.0000 – –
Speedup 1.2179 1.2178 – –

4 1.3290± 0.0000 1.3329± 0.0000 1.3368± 0.0000 1.3407± 0.0000
Speedup 1.2178 1.2179 1.2178 1.2178

8 1.3329± 0.0000 1.3407± 0.0000 1.3368± 0.0000 1.3368± 0.0000
Speedup 1.2178 1.2178 1.2178 1.2178

Num
Rnds Rnd 5 Rnd 6 Rnd 7 Rnd 8

8 1.3368± 0.0000 1.3368± 0.0000 1.3484± 0.0000 1.3484± 0.0000
Speedup 1.2178 1.2178 1.2178 1.2178

Table 4.3: Mifare Plus EV1 Proximity Check response times, in ms, with
fc = 16.50 MHz.

of the Mifare DESFire should be 16.30 MHz
13.56 MHz

= 1.2021 The actual speedups,

calculated as foverclocked
f13.56 MHz

, can be seen in Tables 4.3 and 4.4.

In Tables 4.3 and 4.4, the actual speedups matched the expected speedups

very closely (<0.1% difference). For RndA sent as 1 round to the Mifare

Plus, the speedup was 21.78%, or 0.2836 ms. That 0.2836 ms time gap

would allow a signal to be relayed over a round-trip distance of 85.08 km.

For RndA sent as 1 round to the Mifare DESFire, the speedup was 20.21%,

or 0.2775 ms. In that 0.2775 ms, a signal can be relayed over a round-trip

distance of 83.25 km. However, these distances are assuming no delay in the

implementation of the relay devices. In Section 4.3, technical details will be

presented on how a practical relay attack can be carried out.

49

Num
Rnds Rnd 1 Rnd 2 Rnd 3 Rnd 4

1 1.3729± 0.0000 – – –
Speedup 1.2021 – – –

2 1.3846± 0.0000 1.3925± 0.0000 – –
Speedup 1.2022 1.2023 – –

4 1.3925± 0.0000 1.4042± 0.0000 1.4003± 0.0000 1.4121± 0.0000
Speedup 1.2023 1.2023 1.2024 1.2022

8 1.4042± 0.0000 1.4042± 0.0000 1.4003± 0.0000 1.4082± 0.0000
Speedup 1.2025 1.2025 1.2024 1.2023

Num
Rnds Rnd 5 Rnd 6 Rnd 7 Rnd 8

8 1.4082± 0.0000 1.4082± 0.0000 1.4121± 0.0000 1.4121± 0.0000
Speedup 1.2023 1.2023 1.2024 1.2023

Table 4.4: Mifare DESFire EV2 Proximity Check response times, in ms,
with fc = 16.30 MHz.

4.3 Overclocking Relay Attack Example

A valid reader inside a top-secret building, Reader 1, is tampered with. Its

standard hardware is left alone, but an inconspicuous module is added to it

which has the ability to perform an overclocked transaction with a smartcard

and wirelessly relay the communication to a proxy. The proxy desires to gain

access to Reader 2, which is located in a similar top-secret building 25 km

away and within line-of-sight of Reader 1. Both PCDs perform a distance-

bounding protocol in order to prevent relay attacks by ensuring that the

PICC is within a distance of 1 m of the PCD.

Whenever a user presents a smartcard to Reader 1, Reader 1’s standard

hardware performs the normal transaction to grant a user access, using a fre-

quency of 13.56 MHz. The mole listens for when this transaction is complete,

notifies the proxy to prepare a transaction, and then performs a transaction

of its own at a frequency of 16.30 MHz (while, to avoid interference, ensuring

the 13.56 MHz Reader 1 does not transmit).

50

The mole receives the requests originating at the proxy and sends the re-

sponses it receives from the valid PICC back to the proxy. Meanwhile, the

proxy communicates with Reader 2, presenting data to the valid PCD which

was received from the mole. Using this methodology, the proxy is able to cir-

cumvent Reader 2’s distance-bounding protocol and successfully gain access

to Reader 2 without the consent or knowledge of the smartcard holder.

So, how can such an attack be implemented? The Proxmark 3 has the ability

to act as both a mole and a proxy. Then, hardware needs to be chosen to

implement the relay between the mole and proxy, which can be wired or

wireless. I present both wired and wireless relays, although wireless relays

are more likely to be used for a distance of 25 km. The implementation of (1)

the mole and proxy, and (2) the wireless relay are discussed in detail below.

1. Mole and Proxy Implementation – Two-way communication be-

tween the mole and proxy is required in order to implement the relay

attack previously shown in Figure 2.1. A simple way of communicating

between the two Proxmarks over a wired relay is using digital com-

munication. With digital communication, the communication between

the two Proxmarks would take place after the Proxmark 3 has demodu-

lated the signal coming from the valid PCD or PICC, introducing four

delays:

(a) The time for the proxy to demodulate the signal received from the

valid PCD.

(b) The time for the mole to fully receive and send to the valid PICC,

at 16.30 MHz, the message received from the proxy.

(c) The time for the mole to demodulate the signal received from the

valid PICC.

(d) The time for the proxy to fully receive and send to the valid PCD,

at 13.56 MHz, the response received from the mole.

A timing diagram with these delays is shown in Figure 4.1, which shows

each of the four timing delays that occur after each component in the

51

(a)
Proxy

Valid

PICC

Valid

Mole

(d)

PCD

(c)(b)

Relay

Time

Figure 4.1: The four relay attack processing delays.
Original image by Clulow et al. [3].

relay does its processing.

The two demodulation delays (delays (a) and (c)) can be calculated

based on the number of clock cycles which occur after the valid PCD

and valid PICC send their data. The Proxmark’s ADC takes 3 osc_clk

clock cycles (0.22 µs at 13.56 MHz) to convert analog data into its

digital form, and the Proxmark 3’s Gaussian derivative filter uses the

4 previous ADC outputs to perform edge detection. Therefore, the

total demodulation delay is estimated to be 7 clock cycles. With a

frequency of 13.56 MHz, this corresponds to a delay of 0.52 µs, or

0.43 µs with a frequency of 16.30 MHz. Assuming this delay occurs

once per demodulation, the total demodulation delay time is estimated

at about 1 µs.

To experimentally test the demodulation delay, I measured the delay

between the overclocked reader (mole) receiving a response from the

valid PICC and sending that response out on a serial channel (delay

(c)). The results of conducting this test with a Mifare Plus EV1 clocked

at 16.00 MHz are shown in Figure 4.2, where the top plot shows the

output of curbit and the bottom plot shows the PICC’s raw response

as eavesdropped using a near-field probe.

52

Figure 4.2: Delay between the eavesdropped PICC
response and the mole’s serial output.

The cursors in Figure 4.2 show that the delay between when the PICC

turns on its 847.5 kHz subcarrier and when the mole’s serial output

(curbit) changes is about 1 µs. Given that the delay time of 7 clock

cycles at 16.00 MHz would correspond to a predicted delay of 0.44 µs,

the 7-cycle prediction is off by a factor of approximately 2. This is

possibly due to the Proxmark 3’s analog circuitry delay and the time

the Proxmark 3 takes to perform edge detection.

The two remodulation delays (delays (b) and (d)) are partially due to

the frequency difference between 13.56 MHz and 16.30 MHz. When the

proxy sends data to the mole, it does so at a frequency of 13.56 MHz.

However, the mole needs to communicate with the valid PICC at a

frequency of 16.30 MHz, forcing it to wait to receive data from the

13.56 MHz proxy before it is able to forward all of that data to the

PICC. The resulting delay time is estimated to be 1 µs.

With an estimated two 1 µs delays for remodulation and two 1 µs delays

for demodulation, the total delay to perform a wired relay would be

4 µs. With such a delay, the time gap with the Mifare Plus would

still be over 0.28 ms, and the time gap with the Mifare DESFire would

53

still be over 0.27 ms, allowing a relay attack to still be conducted at a

round-trip distance of over 80 km.

For a wired relay, digital communication can take place over a dedicated

wire used for half-duplex communication between the mole and proxy.

This wire can use the TP7 dbg signal on the two Proxmarks, over which

digital communication can occur between the two FPGAs. Given that

the FPGA does no decoding, the 0s and 1s which get sent serially to

the other Proxmark will still be encoded as either Modified Miller or

Manchester data. A relay attack would work as follows:

(a) Reader 2 sends a request to the proxy Proxmark 3. That request

is received by the proxy Proxmark 3 and demodulated using its

FPGA (delay (a)). It immediately sends the bits over TP7 to the

mole.

(b) The mole Proxmark 3 ensures the standard Reader 1’s communi-

cation with the PICC is complete and that Reader 1 is not active.

The mole tells the proxy to repeat step (a) until Reader 1 finishes

its standard transaction.

(c) The mole remodulates the request received over TP7 at the over-

clocking frequency of 16.30 MHz and sends the request to the

PICC (delay (b)).

(d) The mole demodulates the PICC’s 16.30 MHz response (delay (c))

and sends the corresponding bits (using curbit, which contains

Manchester encoded PICC data) to the proxy over TP7.

(e) The proxy receives the PICC’s response and sends it at 13.56 MHz

to the valid PCD (delay (d)).

(f) Reader 2 continues to send requests to the proxy and the relay

continues until access is granted by Reader 2.

2. Wireless Relay Implementation – Implementing a wireless relay

is more complicated than implementing a wired relay. A näıve way of

wirelessly relaying the 13.56 MHz and 16.30 MHz signals being sent

54

back and forth is to directly amplify the signals which are transferred

between the mole and valid PICC, or proxy and valid PCD. However,

doing so is not practical because of the large antenna which would need

to be used at such low frequencies (a half-wave dipole would be 11 m

long at 13.56 MHz), as well as the problem of distinguishing between

which direction the signals are going in.

Because of this, a higher frequency needs to be used for wireless com-

munication, such as a UHF frequency (300 MHz–3 GHz). Hancke, for

example, used the Micrel QwikRadio MICRF103 and MICRF005 to set

up an 868 MHz OOK channel for mole to proxy communication and

a 915 MHz OOK channel for proxy to mole communication [16]. The

QwikRadio chips were capable of communication rates up to 115 kbps,

allowing the 106 kbps information rate specified by ISO 14443 to be

satisfied.

To do something similar on the Proxmark 3, the bits which are received

from the valid PICC or valid PCD need to be demodulated and sent

serially to a UHF transceiver module. Two separate pins need to be

used by both the mole and proxy to talk to a wireless module – one for

transmitting and one for receiving – due to the separation of Tx and

Rx on most wireless communication chips.

The send and receive signals needed can be set up as I/O pins on

the Proxmark 3 FPGA. However, the PCB currently only gives one

explicit FPGA debug pin, TP7. ANT_LO (TP2), however, can be used

through the CROSS_LO input into the FPGA, despite the path between

ANT_LO and CROSS_LO having 2 resistors and a comparator. Ideally, the

Proxmark 3 Eagle schematic would be changed to include more FPGA

debug pins than just TP7.

Given that the normal ISO 14443 106 kbps data rate would become

20.2% higher, or 127.4 kbps, when overclocking at 16.30 MHz, using a

higher bandwidth chip than the 115 kbps one used by Hancke would

be necessary. An example of a chip which can achieve a data rate of

55

127.4 kbps is the Murata TRC103, which has a maximum data rate

of 200 kbps. The TRC103 can be communicated with using separate

SPI channels for sending and receiving, and can be run at frequency

ranges of 863-870, 902-928 and 950-960 MHz. To be fully implemented,

it needs an external 50 Ω antenna, an RF SAW filter (Surface Acoustic

Wave), a 12.8 MHz crystal, and a few passive components. The DR-

TRC103 development kit is readily available with these components

integrated and offers a range of up to 1 km.

With a wireless relay such as the TRC103, steps (a) and (d) of the

relay attack would involve, rather than communicating with the mole or

proxy over a wire, sending data to the TRC103 over SPI. Additionally,

all the delays present in the wired relay attack would still exist, plus

an additional delay imposed by using two TRC103s. However, these

delays would likely be on the order of microseconds, and therefore the

time gaps for the Mifare DESFire and Mifare Plus would still be on the

order of 0.27 ms and allow a relay attack to be conducted at a one-way

distance of over 40 km.

4.4 Recommendations

Although the Mifare Plus and Mifare DESFire appear to have minimum

and maximum frequencies at which they operate, they are still susceptible

to overclocking relay attacks. In order to prevent overclocking, Reid et al.

suggest implementing a low pass filter [35]. Clulow et al. recognize the same

threat and suggest using an independent time reference [3]. Implementing

extra circuitry to adjust the clock to 13.56 MHz might cost more money, but

doing so is vital to successfully preventing relay attacks. If a company is

serious about implementing a precise distance-bounding protocol, they need

to take into account the importance of precise timing and implement their

product accordingly.

56

Chapter 5

Conclusion

5.1 Summary

In this report, I have shown that it is possible to overclock two popular

contactless smartcards, allowing a relay attack to be conducted on these

cards at a one-way distance of over 40 km, despite the existence of a distance-

bounding protocol. I have used these results to present a setup for conducting

a relay attack in which open-source tools such as the Proxmark 3 are used.

To prevent relay attacks, I suggest that contactless smartcards do not base

their communication speeds on the externally supplied carrier frequency, but

instead use an independent time reference such as a local oscillator.

Additionally, I have shown how to collect precise timing measurements for

the distance-bounding protocols of both the Mifare Plus EV1 and the Mifare

DESFire EV2. I described the methodology of how I collected these timing

results using the Proxmark 3 and presented timing measurements of both

cards at both 13.56 MHz and overclocking frequencies.

57

5.2 Future Work

As contactless smartcards and RFID technology grow in popularity, relay

attacks and distance-bounding protocols will only continue to grow in impor-

tance. It is important to take precise timing measurements on other RFID

tags that implement distance-bounding protocols as they become available.

Because all the Proxmark 3 code used in this project is available on Github,

tests can easily be conducted on such tags, especially if they conform to ISO

14443A. Extensions can also be made to the Proxmark 3 or other tools to

measure time-sensitive NFC transactions on smartphones.

Another future direction of research is to use a tool other than the Proxmark 3

to increase the precision of the timestamps taken to a granularity finer than

62.5 ns. Timing measurements can also be taken on a larger number of

Mifare Plus EV1 and Mifare DESFire EV2 cards, giving more insight into

environmental effects on the cards’ timing as well as manufacturing variables

which might have an effect.

A further extension to this work is to carry out the proof-of-concept relay

attack using the hardware and methodology described in Section 4.3. Do-

ing so would help communicate the threats which overclocking a contactless

smartcard poses as well as prove that conducting such an attack is both easy

and inexpensive.

58

Bibliography

[1] Martin Henzl, Petr Hanacek, and Matej Kacic. Preventing real-world
relay attacks on contactless devices. In Security Technology (ICCST),
2014 International Carnahan Conference on, pages 1–6. IEEE, 2014.

[2] Identification cards – Contactless integrated circuit cards – Proxim-
ity cards. Standard, International Organization for Standardization,
Geneva, CH, 2016.

[3] Jolyon Clulow, Gerhard P Hancke, Markus G Kuhn, and Tyler Moore.
So near and yet so far: Distance-bounding attacks in wireless networks.
In European Workshop on Security in Ad-hoc and Sensor Networks,
pages 83–97. Springer, 2006.

[4] EMVCo. EMV Level 1 Specifications for Payment Systems – EMV
Contactless Interface Specification, Version 3.0. EMVCo, 2018.

[5] Vinay Deo, Robert B Seidensticker, and Daniel R Simon. Authentication
system and method for smart card transactions, Feb 1998. US Patent
5,721,781.

[6] Oliver Kömmerling and Markus G Kuhn. Design Principles for Tamper-
Resistant Smartcard Processors. Smartcard, 99:9–20, 1999.

[7] Samy Bengio, Gilles Brassard, Yvo G Desmedt, Claude Goutier, and
Jean-Jacques Quisquater. Secure implementation of identification sys-
tems. Journal of Cryptology, 4(3):175–183, 1991.

[8] Marci Meingast, Jennifer King, and Deirdre K Mulligan. Embedded
RFID and everyday things: A case study of the security and privacy risks
of the US e-passport. In RFID, 2007. IEEE International Conference
on, pages 7–14. IEEE, 2007.

[9] Flavio D Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter
Van Rossum, Roel Verdult, Ronny Wichers Schreur, and Bart Jacobs.

59

Dismantling MIFARE Classic. In European symposium on research in
computer security, pages 97–114. Springer, 2008.

[10] Mike Bond, Omar Choudary, Steven J Murdoch, Sergei Skorobogatov,
and Ross Anderson. Chip and Skim: cloning EMV cards with the pre-
play attack. In Security and Privacy (SP), 2014 IEEE Symposium on,
pages 49–64. IEEE, 2014.

[11] John Horton Conway. On numbers and games. 1976.

[12] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Conference on the Theory
and Application of Cryptographic Techniques, pages 186–194. Springer,
1986.

[13] Yvo Desmedt, Claude Goutier, and Samy Bengio. Special uses and
abuses of the Fiat-Shamir passport protocol. In Conference on the The-
ory and Application of Cryptographic Techniques, pages 21–39. Springer,
1987.

[14] James Gleick. A new approach to protecting secrets is discovered. The
New York Times, 18:C1, 1987.

[15] Yvo Desmedt. Major security problems with the “unforgeable” (Feige)-
Fiat-Shamir proofs of identity and how to overcome them. In Proceedings
of SECURICOM, volume 88, pages 15–17, 1988.

[16] Gerhard P Hancke. A practical relay attack on ISO 14443 proximity
cards. Technical report, University of Cambridge Computer Laboratory,
59:382–385, 2005.

[17] Gerhard P Hancke. Practical attacks on proximity identification sys-
tems. In Security and Privacy, 2006 IEEE Symposium on, pages 328–
333. IEEE, 2006.

[18] Ziv Kfir and Avishai Wool. Picking virtual pockets using relay attacks
on contactless smartcard systems. In Security and Privacy for Emerg-
ing Areas in Communications Networks, 2005. SecureComm 2005. First
International Conference on, pages 47–58. IEEE, 2005.

[19] Saar Drimer and Steven J Murdoch. Keep Your Enemies Close: Dis-
tance Bounding Against Smartcard Relay Attacks. In USENIX security
symposium, volume 312, 2007.

[20] Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos
Markantonakis. Practical NFC peer-to-peer relay attack using mobile

60

phones. In International Workshop on Radio Frequency Identification:
Security and Privacy Issues, pages 35–49. Springer, 2010.

[21] Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos
Markantonakis. Practical relay attack on contactless transactions by
using NFC mobile phones. In Cryptology and Information Security Se-
ries. 2012.

[22] Michael Roland. Applying recent secure element relay attack scenar-
ios to the real world: Google Wallet Relay Attack. arXiv preprint
arXiv:1209.0875, 2012.

[23] Jordi van den Breekel and BlackHat Asia. Relaying EMV contactless
transactions using off-the-shelf android devices. BlackHat Asia, Singa-
pore, 2015.

[24] West Midlands Police. WATCH: Police release footage of re-
lay crime. https://www.west-midlands.police.uk/news/4544/

watch-police-release-footage-relay-crime, 2017. Accessed: 09
May 2018.

[25] Aurélien Francillon, Boris Danev, and Srdjan Capkun. Relay attacks on
passive keyless entry and start systems in modern cars. In Proceedings
of the Network and Distributed System Security Symposium (NDSS).
Eidgenössische Technische Hochschule Zürich, Department of Computer
Science, 2011.

[26] Alexei Czeskis, Karl Koscher, Joshua R Smith, and Tadayoshi Kohno.
RFIDs and secret handshakes: Defending against ghost-and-leech at-
tacks and unauthorized reads with context-aware communications. In
Proceedings of the 15th ACM conference on Computer and communica-
tions security, pages 479–490. ACM, 2008.

[27] Cas Cremers, Kasper B Rasmussen, Benedikt Schmidt, and Srdjan Cap-
kun. Distance hijacking attacks on distance bounding protocols. In
Security and Privacy (SP), 2012 IEEE Symposium on, pages 113–127.
IEEE, 2012.

[28] Stefan Brands and David Chaum. Distance-bounding protocols. In
Workshop on the Theory and Application of Cryptographic Techniques,
pages 344–359. Springer, 1993.

[29] Thomas Beth and Yvo Desmedt. Identification tokensor: Solving the
chess grandmaster problem. In Conference on the Theory and Applica-
tion of Cryptography, pages 169–176. Springer, 1990.

61

https://www.west-midlands.police.uk/news/4544/watch-police-release-footage-relay-crime
https://www.west-midlands.police.uk/news/4544/watch-police-release-footage-relay-crime

[30] Gerhard P Hancke and Markus G Kuhn. An RFID distance bounding
protocol. In Security and Privacy for Emerging Areas in Communica-
tions Networks, 2005. SecureComm 2005. First International Confer-
ence on, pages 67–73. IEEE, 2005.

[31] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardaş, Cédric Lau-
radoux, and Benjamin Martin. A framework for analyzing RFID dis-
tance bounding protocols. Journal of Computer Security, 19(2):289–317,
2011.

[32] Gildas Avoine, Sjouke Mauw, and Rolando Trujillo-Rasua. Comparing
distance bounding protocols: A critical mission supported by decision
theory. Computer Communications, 67:92–102, 2015.

[33] Gerhard P Hancke and Markus G Kuhn. Attacks on time-of-flight dis-
tance bounding channels. In Proceedings of the first ACM conference on
Wireless network security, pages 194–202. ACM, 2008.

[34] Kasper Bonne Rasmussen and Srdjan Capkun. Realization of RF Dis-
tance Bounding. In USENIX Security Symposium, pages 389–402, 2010.

[35] Jason Reid, Juan M Gonzalez Nieto, Tee Tang, and Bouchra Senadji.
Detecting relay attacks with timing-based protocols. In Proceedings of
the 2nd ACM symposium on Information, computer and communica-
tions security, pages 204–213. ACM, 2007.

[36] Sébastien Gambs, Carlos Eduardo Rosar Kós Lassance, and Cristina
Onete. The Not-so-Distant Future: Distance-Bounding Protocols on
Smartphones. In International Conference on Smart Card Research and
Advanced Applications, pages 209–224. Springer, 2015.

[37] Kevin Soules, Darren Hurley-Smith, and Julio Hernandez-Castro. Mea-
suring the Distance: Investigating the DESFire EV2 Distance Bounding
Protocol. Cryptacus 2017, 2017.

[38] EMVCo. EMV Contactless Specifications for Payment Systems, Book
C-2, Kernel 2 Specification, Version 2.6. pages 97–98. EMVCo, 2016.

[39] Steven J. Murdoch. Do you know what you’re paying for? How
contactless cards are still vulnerable to relay attack. https://www.

benthamsgaze.org, 2016. Accessed: 15 May 2018.

[40] Karsten Nohl. MIFARE, little security, despite obscurity. In the 24th
Congress of the Chaos Computer Club in Berlin, December 2007, 2007.

62

https://www.benthamsgaze.org
https://www.benthamsgaze.org

[41] Karsten Nohl, David Evans, Starbug Starbug, and Henryk Plötz.
Reverse-Engineering a Cryptographic RFID Tag. In USENIX security
symposium, volume 28, 2008.

[42] Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D Garcia.
A practical attack on the MIFARE Classic. In International Conference
on Smart Card Research and Advanced Applications, pages 267–282.
Springer, 2008.

[43] Carlo Meijer and Roel Verdult. Ciphertext-only Cryptanalysis on Hard-
ened MIFARE Classic Cards. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, pages
18–30, New York, NY, USA, 2015. ACM.

[44] Identification cards – Contactless integrated circuit cards – Vicinity In-
tegrated Circuit(s) Card. Standard, International Organization for Stan-
dardization, Geneva, CH, 2010.

[45] John Wehr. Is the Debate Still Relevant? An in-depth look at ISO
14443 and its competing interface types. https://www.secureidnews.
com/news-item/, 2003. Accessed: 31 May 2018.

[46] Klaus Finkenzeller. RFID handbook: fundamentals and applications
in contactless smart cards, radio frequency identification and near-field
communication. John Wiley & Sons, 2010.

[47] Advanced Card Systems Ltd. ACR122U USB NFC Reader. https://

www.acs.com.hk/en/products/3/acr122u-usb-nfc-reader/, 2018.
Accessed: 15 May 2018.

[48] Identiv. SCL3711 Contactless USB Smart Card Reader. https:

//support.identiv.com/scl3711/, 2018. Accessed: 15 May 2018.

[49] Flavio D Garcia, Gerhard de Koning Gans, and Roel Verdult. Tutorial:
Proxmark, the swiss army knife for RFID security research. Technical
Report, Radboud University Nijmegen, 2012.

[50] Ventzislav Nikov and Marc Vauclair. Yet Another Secure Distance-
Bounding Protocol. SECRYPT, 2008:218–221, 2008.

[51] Peter Thueringer, Hans De Jong, Bruce Murray, Heike Neumann, Paul
Hubmer, and Susanne Stern. Decoupling of measuring the response
time of a transponder and its authentication, 2011. US Patent App.
12/994,541.

63

https://www.secureidnews.com/news-item/
https://www.secureidnews.com/news-item/
https://www.acs.com.hk/en/products/3/acr122u-usb-nfc-reader/
https://www.acs.com.hk/en/products/3/acr122u-usb-nfc-reader/
https://support.identiv.com/scl3711/
https://support.identiv.com/scl3711/

64

Appendix A

Mifare Plus and Mifare

DESFire Setup

Before the Mifare Plus EV1 and Mifare DESFire EV2 Proximity Checks

could be performed, I had to initialize the cards.

On the Mifare Plus EV1, the card starts out in Security Level 0 (SL0). In

order to perform the Proximity Check however, the card needs to be in either

SL1 or SL3. I began my tests by using the Mifare Plus in SL1, but in SL1

the ACR122 had trouble communicating with the Mifare Plus due to the

PC/SC library not completing the PPS (Protocol and Parameter Selection)

check required by ISO 14443-4. Because of this, I ended up using the Mifare

Plus in SL3. Before moving the Mifare Plus into SL1 or SL3, I explicitly set

all the Mifare Plus keys, including the VCProximityKey, which is a 128-bit

AES key used for MAC verification during the distance-bounding protocol.

Setting keys on the Mifare Plus EV1 does not require an authentication while

the card is in SL0.

On the Mifare DESFire EV2, the concept of security levels does not exist.

However, I could not perform the Proximity Check on the DESFire until I

explicitly set the VCProximityKey, which is disabled by default. Unlike the

Mifare Plus EV1, setting keys on the Mifare DESFire EV2 requires an active

65

authentication to the card. To change keys on the DESFire, therefore, I used

the ACR122 with the Python pyscard library because of the availability

of cryptography libraries in Python such as cryptography. First, I per-

formed a 3DES authentication to the DESFire using the PICCMasterKey, at

which point I was able to set the VCConfigurationKey using the DESFire’s

ChangeKey command. Next, I performed an AES authentication to the

DESFire using the VCConfigurationKey and used the ChangeKey command

to set the VCProximityKey. After VCProximityKey had been explicitly set,

the key was enabled and I was able to perform the Proximity Check using

either the ACR122 or the Proxmark 3.

66

	Introduction
	Motivation
	Aims and Contributions
	Report Organization

	Related Work
	Relay Attacks
	Relay Attack Origins
	Relay Attacks in Practice

	Distance Bounding
	Distance-Bounding Protocols
	Distance Bounding in Practice

	Miscellaneous Mifare Research

	Design and Implementation
	ISO 14443
	ISO 14443 Overview
	ISO 14443A Physical Layer
	ISO 14443A Timing

	Proxmark 3
	Proxmark 3 Overview
	Proxmark 3 Software
	Proxmark 3 Hardware

	Distance Bounding Timing Measurements
	Mifare Proximity Check
	Measuring Timing Using the Proxmark 3

	Overclocking
	Changing the Proxmark 3 Clock
	Analog Considerations of Overclocking

	Results and Evaluation
	Timing Measurements
	Overclocking Results
	Overclocking Relay Attack Example
	Recommendations

	Conclusion
	Summary
	Future Work

	Mifare Plus and Mifare DESFire Setup

